

What is the SCSI?

The Student Computer Science Initiative leads students in developing a more engaging,

rigorous, and growth-oriented CS program by taking community feedback and synthesizing it

into proposals, tools, and reports, such as this one. The SCSI was created by Student Council in

October of 2014 with support from the student body’s most avid CS learners as well as many

professionals in industry and education from around the country. More information about the

student vision for CS at IMSA can be found on SCSI’s blueprint (bit.ly/scsiblueprint).

Why did we choose to focus on assessment techniques?

Of the six recommendations outlined in the Renk and Morrison review of IMSA’s CS program,

the one on assessments is most striking to IMSA students. Assignments, tests, and final grades

have a big impact on the confidence of students, especially those who are exploring CS for the

first time. Current CS techniques implemented in schools’ curriculum do not allow room for

mistakes and judge harshly for imperfections. In order to build the resilience of strong

programmers and curiosity of strong scientists, IMSA needs a suite of CS assessment techniques

that gives students meaningful and constructive feedback as well as room to explore and revise.

Specifically, the Renk and Morrison review calls for IMSA to:

Develop a new and more accurate instrument or methodology for assessing student
computer science proficiency

Because no single instrument can fully analyse proficiency, the SCSI has developed multiple

instruments that test proficiencies in different, fractional areas. These have been synthesized

with insight gained through numerous discussions, workshops, and sample class sessions. This

report explains the major lessons that students have synthesized about CS assessment,

describes the different types of CS assessments instructors can employ, introduces techniques

for these assessments, and includes example assessments that can be used in IMSA

classrooms.

1

http://bit.ly/scsiblueprint

What are the characteristics of a good CS assessment?

Strong computer science assessments should:

A. Provide useful feedback, emphasizing design feedback over syntactical feedback.

B. Monitor growth and encourage challenges at or above a student’s skill level.

C. Promote creative solutions to problems based on real-world applications.

D. Demonstrate students’ understanding of the problem and solution domains.

E. Facilitate an engineering design process in which students have to make intelligent

decisions on the structure of their solutions and the constraints of their problem.

F. Be resource-blind, ensuring that access to resources like StackOverflow do not

determine whether or not a student can generate a solution to a problem.

G. Build proficiency in processes that are essential to programming, including debugging,

documentation, collaboration, and written/verbal communication of results.

What kinds of CS assessments can fulfill these characteristics?

The SCSI has taken its feedback and created three categories of assessments:

I. Modeling Assessments

○ Students use computing to tackle real-world problems, building their capacity to

analyse and engineer.

○ Emphasis on characteristics: C, D, E, F

II. Competitive Assessments

○ Students, individually or in teams, prepare programs to perform under given

conditions and compete against each other, motivating them to take unique

approaches to the challenge.

○ Emphasis on characteristics: A, B, C, E

III. Interpersonal Assessments

○ Students work with classmates to improve each others’ programming abilities by

sharing feedback and learning from others’ results.

○ Emphasis on characteristics: A, B, F, G

2

Lessons

● Computer science can be used to model real-world problems and solve complex issues

● Computer science can be utilized in all disciplines, not just computer-related ones

● Modeling exercises allow students to verify the correctness of their code with their

intuition and knowledge

● Exciting and relevant problems, like modeling the spread of a disease or the motion of a

rocket, are more engaging than contrived problems about fake scenarios.

● Special emphasis on assessment characteristics: (C) real-world applications, (D) problem

and solution domains, (E) engineering design processes, and (F) resource-blind

assessments.

Overview

The power of the computer lies in its ability to do millions of calculations in short amounts of

time. For years, scientists have been using computers to generate complex models that cannot

be calculated by hand. These models, in turn, have given scientists the ability to do things such

as predict natural disasters, determine the effects of global warming, and test solutions to large

problems. Modeling assessments give students the chance to apply computer science to

real-world problems that they are interested in, increasing engagement and interest in the

course. Additionally, students are taught how they might use computer science to solve future

problems they encounter in their careers.

Techniques

Level System

Instead of having a single challenge for all students to complete, instructors can opt to base

their assessments off of a level-system of increasing difficulty. Each level should build upon the

last one as well as offer a new challenge for students. Structuring assessments as such offers

challenge to students of all proficiencies and thus improves classroom engagement. A four-tier

system is recommended to provide challenge for each student. The first tier should be narrow

3

in focus such as building a single object, which can be built upon in the second tier through

developing methods. The third tier should expand the scope of the project and have students

incorporate their object into a larger system, and finally, students should attempt to replicate a

real-world situation of their challenge in the fourth tier. If needed, teachers may add tiers.

Designing General Purpose Models

In order to make use of their programming skills in other environments, students must learn to

develop extensible and reusable code. To encourage general purpose solutions rather than

problem-specific ones, students will be asked to model an event or process outside of class. On

test day, students will have to use their code to solve a unique problem involving their model. A

simple example of this could be asking students to develop a simple algorithm that can encrypt

a few sentences of text, and then asking them to use their code to encrypt an entire book, the

identity of which is not known before the assessment. A more complicated example might be

modeling the progress of a combustion engine based on different kinds of fuel put into it. This

assessment values students creating interoperable code that works in a variety of scenarios.

Students will be given the scenario ahead of time, but not the specific variables that will

determine the expected output. This encourages students to generate general solutions that

can be adapted to a variety of problem conditions and expanded on in the future.

Problem Application

Computer simulations are useful because they can be used to predict events in the real world.

Modeling Assessments should encourage students to develop models that match the real world

as closely as possible. Assessments in this vein could include asking students to use their

models to predict the results of a real-world process, then comparing the simulated results to

the observed results. This rewards students who create interoperable and realistic models.

4

Lessons

● Students should learn from others’ techniques and implementations and build upon

those in order to create better solutions

● Students should understand the full scope of the problem when designing solutions in

order to take into account all perspectives

● Collaboration is an essential part to computer science, and proficiency requires a

number of skills including documentation, modularity, and careful planning

● Students are motivated to do their best when their competitive nature is engaged

● Special emphasis on assessment characteristics: (A) design feedback, (B) growth, (F)

resource-blind assessments, and (G) proficiency in processes are key

Overview

When competition is added to the classroom environment, students have a greater motivation

to perform at their highest capacity. However, rather than breeding hostility, competitive

assessments aim to provide students with an opportunity to demonstrate where their solutions

to given programming problems excel and examine the strengths of the solutions their peers

devise. Thinking critically about a problem builds understanding, and competitive assessments

require students to think critically both about the way they attack problems and the way their

competitors attack problems in order to formulate a superior solution.

Techniques

Programmer vs. Programmer (PvP)

PvP competitions simply place students or teams of students against one another in order to

see whose code performs better. PvP competitions work extremely well in assignments that give

students a framework to build upon. Students are able to demonstrate their knowledge of

coding through customizing their specific competitor within the framework given by the

instructor. There are two main aspects of customization that students should be able to control:

base traits and behavior. Base traits should allow students to pick starting characteristics for the

5

object generated as well as the standard deviation for future instances of the object, if

applicable (like an animal). However, there should always be a focus on creating multiple

dimensions of strategy to force student development of more sophisticated algorithms. The

more challenging part for programmers to code will be the behavior of the object. The

programmers should dictate how the objects should act and what decisions they should make

upon receiving input.

Programmer vs. AI (PvAI)

The other option for a competitive assessment is pitting the players against a common AI and

testing the proficiency of the project. From there, the results of each student’s project can be

compared and a ranking can be determined. PvAI eliminates much of the chance that is

inherent in having students face off against each other. However, instructors are required to

develop this AI as well as make it complex enough to test even the most proficient students’

projects.

1v1 (PvP)

In the most basic form of PvP, students face-off against each other in a two-person match.

However, this type of competition is vulnerable to the variation in class proficiency. A new

programmer placed against a highly-experienced programmer has a high likelihood of doing

much worse than if placed against another new programmer. As a result, chance plays an effect

on the outcomes of the competition. This can be remedied by placing programmers into a

tournament bracket or pool that gives them the opportunity to face multiple other

programmers before results are produced (a round-robin or group stage). Alternate

tournament structures can be borrowed from professional sports tournaments.

Team-Based (PvP)

Instead of having students individually face-off against each other, instructors can opt for

team-based competitions. In the real-world, enterprise development is never a one-person job.

Instead, teams of varying sizes and expertises are put together in order to complete projects. As

a result, coders must be adept at collaborating with others and using version control software

such as GitHub in order to sync changes. Team-based competitions test students’ abilities to

communicate with one another as well as document their code well enough for their

teammates to read. However, the downfall of team-based competitions, like any other

team-based assignment, is that certain members of the team can end up putting little to no

6

effort towards their part and bring down the rest of the team. On the other hand, stronger

members of the team may end up taking over projects, making individual grading difficult as

well. At IMSA especially, the prioritization of individual work in classes over group work in other

classes can be detrimental to collaboration in the classroom. To alleviate the problem of

unbalanced contributions, teachers need to craft assignments that engage students and require

a variety of different perspectives and skillsets.

Arena (PvP)

Instructors can choose to make an arena-style competition, where all programmers’ projects are

placed into a single simulation to see which one comes out on top. Arena competitions not only

get rid of discrepancies that arise from 1v1 competitions, as all students are facing the same

opponents, it also forces the students to account for a wider variety of situations as they have to

account for the capabilities of multiple other projects instead of just one. However, having many

students face off at the same time can lead to random chance highly influencing the outcome of

the arena simulation. Instructors should make sure to run multiple rounds of the arena in order

to account for this variability, or take steps to reduce the effect of random chance such as using

the same-seed random number generator every round.

Player Rumble (PvP)

Instructors can choose to develop a series of increasingly difficult artificial intelligences (AI). The

more AI’s the student can defeat, the higher the student’s grade is. This allows instructors to

measure the proficiency of the students as well as set benchmarks for them. For instance, if an

instructor plans out his or her curriculum intending for students to get to the eighth level but

none of the students do, he or she knows that the students have not grasped the concepts and

further class time is needed to go back and review them.

7

Lessons

● Qualitative feedback is essential to student growth, but large class sizes make it hard for

teachers to provide this to every student on every submitted assignment.

● When CS students are encouraged to share their work and learning with each other, they

are exposed to new ways of solving problems and avoid common mistakes.

● Reading a student’s code alone is not sufficient to assess their conceptual understanding.

● Making effective pairs or teams for collaborative assignments becomes easier as the

semester goes on because the teacher is more aware of students’ needs.

● Special emphasis on assessment characteristics: (A) design feedback, (B) growth, (F)

resource-blind, and (G) proficiency in processes are key.

Overview

Learning computer science with a class of peers brings many advantages to learning alone. CS

classrooms can capture these advantages by promoting the sharing of knowledge between

students by providing opportunities for collaborative programming, and even tasking students

with helping assess each other. Interpersonal learning experiences strengthen students’

learning by exposing them to peers who think differently and pushing them to understand

concepts deeply so that they can mentor others. This section presents structures that can

encourage, capture, and assess the learning products of these interpersonal CS interactions.

This set of techniques makes heavy use of qualitative feedback that is not easy to convert into

quantitative metrics. To make up for cases when the qualitative experience and quantitative

score may not match up, all of these techniques are designed to be growth experiences in their

own rights, so that students can derive personal lessons instead of simply relying on a number

for affirmation.

Spotlight Reports

Teachers can lighten their grading load as well as gather useful feedback for their students by

outsourcing parts of the assessment process to the class. In a spotlight report, students would

be put in pairs and asked to write one page that identifies strong parts of their partner’s code as

8

well as areas for improvement. If a peer’s feedback is sufficient, the instructor does not need to

spend as much time on their partner’s assignment and can focus on other students’ work.

Spotlight reports give students good practice in communicating about code and push them to

explore their peers’ work, potentially learning lessons from them. Moreover, spotlight reports

press students with the question: What does good code look like? At the start of a semester, the

teacher can provide a definition to answer this question and allow the class to modify it

throughout the course. The teacher can encourage students to cite examples of the qualities of

good code in their partner's’ work, giving reports a set of common standards.

Libraries

Students learning the same topic together are bound to encounter similar problems and

resources. CS classes can offer libraries that allow students to share these with each other by

allowing them to post and read entries from a common location. For example, a class may have

a Bug Ticket Library where students identify frequently-recurring errors from assessments. Not

only can the entire class benefit from these warnings, but the students who post Bug Tickets will

be especially aware of avoiding those errors in the future. Teachers can monitor which students

are active in libraries, encouraging them to both use and contribute so that they become

stronger programmers.

Partner Programming

Collaborative projects can be difficult at IMSA because of students’ individual workloads. Thus,

partner assignments should be structured so that a student is not fatally undermined by

problems with their partner’s code. At the same, the structure of partner projects should

promote collaborative discussion about solution design and peer tutoring. Here are some

formats that can meet those needs:

● Code Swap: Both partners are given the same kind of project, except with different

topics. After completing the first level of the assignment, they will switch code with each

other and have to program the second level from their partner’s framework. This format

reminds students of the value of good documentation. If a student does not finish their

first level in time, their partner will work on a sample given by the teacher.

● Components: Students are given two basic components that interact with each other

and must work on optimizing them. This type of assignment rewards students who

design and test their components together, perhaps even learning version control

9

programs like Git and Subversion. However, if one partner is behind in development, the

other still has the original, basic component to test their program with.

● Cross-Teaching: Students are given the same problem, but are taught different

approaches or content for solving it. After completion, their job is to teach the approach

they learned to their partner. The students will tackle the problem again, this time with

the approach learned from their partner.

Sans-Code Assessments

Assessing code does not reveal all. Sometimes, students who code with perfect syntax do not

have a conceptual understanding of what their program is doing. There are also students who

are thinking computationally but struggling to translate those ideas to code. To help students in

this cases grow, teachers should employ assessments outside of programming assignments.

One way to assess students sans-code is through interview questions, like those used by

companies searching for top-notch computer scientists, not just skilled programmers. Asking

students to, for example, explain a useful metaphor for a kind of data structure or write out

pseudocode that shows the functionality of a simple game like FizzBuzz, reinforces conceptual

understanding and and communication skills.

When students write pseudocode, they fill a blank line in their code with a note about what that

part of the program is supposed to do. This is a useful assessment tool outside of interviews as

well. The assignments recommended in this report are quite rigorous, so students who run out

of time or have ideas for features that they have not yet learned to code should be allowed to

submit assignments with pseudocode. Having pseudocode for a feature is preferable to not

having it and can help the teacher better understand a student’s learning process, helping them

push the student to wean off of pseudocode as the semester goes on.

10

The Student Computer Science Initiative would like to acknowledge the following individuals for

contributing their expertise and time to the Student Computer Science Initiative:

Mr. Brian Sea (formerly of Philip Exeter Academy) for providing feedback on the SCSI pilot

programs and sharing his experience with IMSA’s CS curriculum

Dr. Dong (IMSA) for lending insight on how to blend computer science with its various

applications

Dr. Gleason (IMSA) for working with the SCSI and giving valuable curricular recommendations

IMSA Alumni (IMSA) for sharing their vast array[∞] of professional experience & expertise in

the real world

IMSA Student Body (IMSA) for providing their valuable input on engaging students and creating

great curriculum

Mr. Lawrence (IMSA) for supporting the push to bolster IMSA’s CS program

Dr. Morrison (NCSSM) for giving recommendations on the SCSI, providing insight on a

Froobles-y future, and sharing his work at NCSSM

Dr. Prince (IMSA) for giving his feedback on the SCSI blueprint

Dr. Renk (North Central College) for supporting IMSA’s CS program

11

